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It is demonstrated how the computer, used in a heuristic mode, has greatly augmented our 
understanding of the mathematics of nonlinear dynamical process. Examples are given of 
recent work in soliton mathematics (mainly), but also nonlinear iterative mappings and low- 
order nonlinear ordinary differential equation systems. The role of good graphics in enhancing 
the discovery and retention of new mathematical properties of equations is illustrated. Several 
examples are given of the present frontier of research in two space dimensional nonlinear 
evolutionary problems. 

1. INTRODUCTION 

In the early fifties E. Fermi, the theoretical physicist, remarked that the results 
“... really constituted a little discovery . ..” [ 11. He referred to an observation of near- 
recurrence in numerical solutions of 32 coupled nonlinear differential equations on 
the MANIAC I computer at Los Alamos. This pioneering work, called the Fermi, 
Pasta, Ulam (FPU) problem, is an example of the heuristic use of computers which I 
will elaborate in this paper. 

My goal is to show with concrete examples how, by the judicious use of computers, 
we can penetrate into new areas and discover linkages to diverse areas of 
mathematics unforeseen by our forbears. With insight obtained from numerous 
solutions, often displayed naturally by graphs and cinemas, we may be liberated from 
the prejudices of our conservative and sometimes misguided mathematical intuitions 
[2]. For, as Fermi continued, these results provided “... intimations that the prevalent 
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beliefs in the universality of ‘mixing and thermalization’ in nonlinear systems may not 
always be justified.” 

As with others before me [3], I will not attempt a philosophical or psychological 
discussion. I will relate essentially my experiences with the FPU problem and solitons 
and my interpretation of the experience of E. N. Lorenz with three nonlinear 
differential equations and the Los Alamos group of Ulam, Stein, Metropolis and 
Feigenbaum on nonlinear mappings. From these, I will attempt to distill essences of a 
synergetic computational style. 

I use the word “synergetic” here to mean the enhancement in the rate and depth of 
mathematical understanding through the combined use of analysis and computer 
simulation. “Synergetic” was first used in this context by S. M. Ulam [4]. I 
illustrated these general ideas in relation to the FPU problem [5] in the early soliton 
days prior to 1967. 

In the past, I have found it difficult to relate this mode of working via lectures. 
Perhaps this mode is still an art form understood by committed practitioners in 
benign computer environments and learned only by apprenticeship. Perhaps this 
difficulty is related to the item in Lankavatara Sutra, “... words and sentences ,.. 
cannot express the highest reality . . . . Truth is beyond letters and words and 
books” [6]. However, I believe things are changing and in the future we will 
transcend these communication barriers by improving the training that scientists and 
engineers receive, as discussed by Davis and Anderson in a refreshing and vital paper 
[61. 

Almost everyone using computers has experienced instances where computational 
results have sparked new insights. The range covered is large: from uncovering 
mistakes in formal derivations or calculations; to suggesting combinations of 
parameters with which to make asymptotic expansions and thereby obtain equations 
which are analytically tractable [7]; and finally to shining the light of inspiration into 
areas which have been thought devoid of possible new concepts or new fundamental 
truths. The last, namely, the heuristic use of computers to obtain and display the 
results of numerical experiments where parameters are varied and solutions returned 
in a rapid interactive fashion is the mode of working that I will elaborate. 

Although several pioneering steps have been taken, we are just at the beginning of 
a mind-augmenting revolution that inexpensive and robust computing will allow the 
prepared investigator. 

2. HISTORICAL PERSPECTIVES 

L. F. Richardson in 1922 foresaw how computers could revolutionize the 
understanding and prediction of meteorological processes [B]. However, he seemed to 
be unaware of the complexity of physical phenomena and the magnitude of the 
computational problem. 

John von Neumann foresaw all of it! His belief that high-speed computation would 
revolutionize the approach to mathematics and the way we explore, understand and 



COMPUTATIONAL SYNERGETICS 197 

apply the natural sciences is expressed in papers that radiate inspiration [9, 101. His 
beliefs were undoubtedly shaped by being deeply involved with answer-demanding 
applied-mathematical problems. They resulted mainly from the exigencies of World 
War II and the nuclear developments arising afterwards and included: shock wave 
compressible flow; vertical, turbulent and incompressible atmospheric flows; porous- 
media flows; neutron diffusion, etc. ; inversion of large matrices; and the development 
of numerical and coding methods to obtain solutions. 

In 1946 he asked: “To what extent can human reasoning in the sciences be more 
efficiently replaced by mechanisms?” and: “What phases of pure and applied 
mathematics can be furthered by the use of large-scale, automatic computing 
instruments?” 

He continued in 19, Sect. 21, entitled “Importance to Mathematics”: 

Our present analytical methods seem unsuitable for the solution of the important problems 
arising in connection with non-linear partial diferential equations and, in fact, with virtually 
all types of non-linear problems in pure mathematics. The truth of this statement is 
particularly striking in the field of fluid dynamics. Only the most elementary problems have 
been solved analytically in this field... . 

The advance of analysis is, at this moment, stagnant along the entire front of non-linear 
problems. That this phenomenon is not of a transient nature but that we are up against an 
important conceptual difficulty . . . yet no decisive progress has been make against them . . . 
which could be rated as important by the criteria that are applied in other, more successful 
(linear!) parts of mathematical physics... . 

It is important to avoid a misunderstanding at this point. One may be tempted to qualify 
these [shock wave and turbulence/ problems as problems in physics, rather than in applied 
mathematics, or even pure mathematics. We wish to emphasize that it is our conviction that 
such an interpretation is wholly erroneous... . 

They give us the first indication regarding the conditions that we must expect to find in the 
held of non-linear partial differential equations, when a mathematical penetration into this 
area, that is so difftcult of access, will at least succeed. Without understanding them and 
assimilating them to one’s thinking even from the strictly mathematical point of view, it seems 
futile to attempt that penetration... . 

That the first, and occasionally the most important, heuristic pointers for new mathematical 
advances should originate in physics, is not a new or a suprising occurrence. The calculus 
itself originated in physics... , 

. . . we conclude by remarking that really efficient high-speed computing devices may, in the 
field of non-linear partial differential equations as well as in many other fields which are now 
difticult or entirely denied of access, provide us with those heuristic hints which are needed in 
all parts of mathematics for genuine progress... . This should ultimately lead to important 
analytical advances. 

I have quoted extensively to illustrate von Neumann’s originality and rare 
prescience [ 11, 121 and to justify my title. 

The “stagnant” condition to which von Neumann referred was the result of the 
approach and collective intuition dominating mathematics. Courant and 
Robbins [ 131 also noted, “There seems to be a great danger in the prevailing 
overemphasis on the deductive-postulational character of mathematics... .” and 
Hahn [ 141 remarks, “... intuition is force of habit rooted in psychological inertia,” or 
the preservation of “self.” It is not surprising that breakthroughs in the areas outlined 
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by von Neumann were accomplished mainly by young physicists and applied 
mathematicians often working at, or in collaboration with, laboratories that have 
pioneering practical responsabilities. 

Heisenberg contributed his experiences with strongly interacting physical 
phenomena at the first International School of Nonlinear Physics [ 151. He noted, 
‘I... the progress of physics will to a large extent depend on the progress on nonlinear- 
mathematics, of methods to solve nonlinear equations . . . and therefore one can learn 
by comparing different nonlinear problem.” S. M. Ulam, was also intrigued by 
nonlinear phenomena and their natural appearance in physical and biological 
systems. In his 1960 monograph, “A Collection of Mathematical Problems” [4] he 
points to two areas that he and his colleagues considered, namely, the problem of 
oscillations in a nonlinear one-dimensional lattice of equimass particles (the FPU 
problem) and the problem of nonlinear transformations or iterative mappings. 

The major part of this paper is devoted to the FPU problem and solitons because 
of: remarkable mathematical developments; numerous applications in diverse areas of 
physics; and the emergence of a new style of working. In Section 3 our discussion 
moves between discrete and continuous representations of physical systems and is 
divided into three chronological periods: early (until 1964); heroic (1965-1971); and 
generalization, abstraction, and application (1972-present). The discussion will be 
punctuated with “Remarks” which are commentaries to highlight aspects of the 
narrative. As will be seen, computer simulation plays a major probing role during the 
first period; a strong synergetic role during the second period; and a necessary 
supporting role during the last period. 

In Section 4 we look at the panorama of new directions. In Section 4.1 we review 
recent progress in nonlinear lattice dynamics. In Section 4.2 we look at few-mode 
nonlinear systems and universal behavior that may be relevant to continuous systems. 
In Section 4.3 we review pioneering studies by computational physicists and 
mathematicans of the interaction of localized states in two-space dimensions. Again, 
the computer’s primacy is ascendant, for we are moving out of the (x, t) flatlands into 
the domain where integrable systems are less prevalent. Finally, in Section 4.4 we 
consider the shallow water wave milieu, We examine the role of modeling, analysis, 
and experiment, as synergized by computation in elucidating natural phenomena. 

3. FERMI-PASTA-ULAM PROBLEM AND SOLITONS 

3.1. The Early Period (until 1964) 

Physicists since early times wrestled with the problem of the transport of heat in 
nonlinear (or “anharmonic”) solids. Debye [ 161 in 19 14 suggested that the finiteness 
of the thermal conductivity of an anharmonic (or nonlinear) nonconducting lattice 
was due essentially to its nonlinearity. In other words, he suggested that the phonons 
or fundamental wave propagation modes would interact because of the nonlinearity, 
thereby inhibiting the propagation of energy. The net effect of many such nonlinear 



COMPUTATIONALSYNERGETICS 199 

interactions or “phonon collisions” would manifest itself in a finite thermal transport 
coefficient; that is, if there is a “mean” energy flux through a region, there will be an 
energy gradient across this region. 

The problem of deducing a finite thermal conductivity for an anharmonic lattice 
from its microscopic properties has challenged theoretical physicists for the last fifty 
years, and as Peierls [ 171 observed in his penetrating review paper, “It seems there is 
no problem in modern physics for which there are on record as many false starts, and 
as many theories which overlook some essential feature, as in the problem of the 
thermal conductivity of nonconducting crystals.” It is undoubtedly this unsatisfactory 
state of affairs which motivated Fermi, Pasta, and Ulam [ 181 to undertake a 
numerical study of the one-dimensional nonlinear lattice. Rather than examine the 
flow of energy from one thermal bath to another bath at lower temperature (we return 
to this problem below), they posed a simpler but related problem: How would a long- 
wavelength initial condition relax in a nonlinear dissipationless medium? Fermi and 
Ulam had been interested in the ergodic behavior of mathematical and physical 
systems, including problems associated with iterative mappings and the rate of 
approach and the asymptotic spectrum associated with energy partition in 
Hamiltonian systems, etc. “Stochastic” and “chaotic” are also employed as adjectives 
for turbulent-like behavior. 

They believed that many-body nonlinear systems would exhibit a relaxation time 
and this physical intuition or hypothesis led FPU to set up a computational program 
that represents in our case the beginning of the synergetic approach for this 
mathematical model. For convenience in presentation, we designate it as 
Hypothesis 1 or Hl and summarize it by: 

Hl. Given a one-dimensional lattice with fixed boundary conditions and with 
identical nearest neighboring masses coupled by identical nonlinear springs. If the 
energy of the system is initially in a long-wavelength state, the energy will eventually 
be shared “equally” among all the degrees offreedom of the system. 

We anticipate future work in this field by noting that Hypothesis 1 restricts the 
problem and thus the resulting solutions by being: specific with respect to the dimen- 
sionality, boundary conditions and masses of the system; somewhat specific with 
respect to the initial conditions; and vague with respect to the type of nonlinearity 
selected. Figure 1 depicts the system of identical masses m with equilibrium separation 

F / 
!! n-1/2 n+l/Z 

0 I 2 3 N N+I 

FIG. 1. A one-dimensional lattice with fixed boundary conditions and neighboring masses coupled 
by nonlinear springs. 
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h and length L = (N + 1)h. Two of the three cases studied dealt with power-law 
nonlinearities, namely, where the energy stored in spring (n, n + 1) was 

V n+1,il = MY"+ 1- Y,Y + MY,, 1-f Y,)""l(P + 2)T (1) 

where (y,+ r - y,) is the displacement and the energy of the system is 

where 

and 

HNL = m 5 (Y,, , - y,)“+xp + 2). 

The last sum in (2a) is over modes, where 

E(kL) = gi: + o&z:), 

W 

Pb) 

(3) 

and ak=a-, are the spatial modes of the system defined by 

a,(t) = 5 y,(t) evikndN 
II=1 

(k = 0, l)...) N), (4) 

and 

co: = 40: sin2(k7r/2N), (5) 

where wi = (K/vz)* is the resonant frequency of a linear sping-mass system. 
For p = 1 and 2 we have the so-called “cubic” and “quartic” nonlinearities, respec- 

tively. When p is odd, there exists the unphysical possibility of “blow-up,” namely, 
where the energy density ceases to increase with increasing displacement (y,, , - y,). 
To avoid this possibility we constrain our initial condition to 

a I(Y,+I(0) - Y,P))lp < j (6) 

for p odd. For p = 2, one can obtain two minima of potential energy if K < 0 and 
cuc > 0, that is, two stable equilibria. Thus, it is clear that with simple structures such 
as (1) there are a host of interesting problems to study. Below we will return to a 
discussion of other forms of the potential energy, either to have a physically relevant 
model for strong excitations or to obtain a mathematically tractable model. 
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The equations governing the dynamics of the FPU lattice are 

G,‘Yn = (Y,,, -2~,+~“-,)+a[(~,+,-~,)P+‘-(~,-~,-,)P+’l~ (7) 

n = 1, 2,..., N and Yo=Y,+,=o~ 

where Y,, E u,(t) is the displacement of the nth mass from its equilibrium position. 
To solve (7), FPU discretized the left side with 

j;, + [Y,@ + @-2Y,(~) + Y,@ - ~WW2~ (8) 

where dt was the time step and w,(dt) < \/0.8. For p = 1, (7) takes the form 

9” = d(Yn+ 1 -Q,+ y,-Jl + a(yn+l - Y,-l)lT 

n = 1, 2,..., N and Yo=YN+l=@ 

(9) 

and FPU chose the lowest-mode initial condition 

y, lo = a sin(n7r/N), it, to = 0. (10) 

Much to their surprise, the system did not “equilibrate” energy among all the N- 
modes of the system, but rather exhibited long-time near-recurrences and energy 
sharing only among the lowest modes of the system. This is shown in the modal plot 
of Fig. 2 [ 181, where we observe the mode 1 energy Ey’ flowing to several other 
modes and finally returning almost completely to mode 1 after 158 linear periods or 
one near-recurrence period, t, . Although FPU varied N from 16 to 64 and a from a 
to 1, they found no qualitative difference in the model behavior; only the recurrence 
time and low-mode amplitudes varied, as discussed earlier [ 19 1. Namely, I fitted data 
from five runs and obtained the formula 

t, /tL = 1 .4(N3/a)“2. (11) 

0 
0 50 loo 150 

PERIODS OF OSCILLATION 

FIG. 2. The modal energies in arbitrary units (proportional to EF’(f)). The “cubic” lattice of Fig. I 
with N = 32, a = $ and a = 1 in Eq. (IO). 



202 NORMAN J. ZABUSKY 

Here rt = 2/cL is the time required for one oscillation of the corresponding linear 
string (C-X = 0). 

So, for the parameter configuration and initial conditions, Hypothesis 1 is not true. 
One could be concerned with the lack of an equilibration state and attempt to force it 
on the system, either through a modification of the spring and mass constants or by 
the appeal to one’s physical intuition, that real three-dimensional crystals have many 
more degrees of freedom and, therefore, more available trajectories in phase space. 
Let us, however, follow the heuristic direction indicated by the computer solutions 
and seek an answer to the near-recurrence problem. Is there something essentially 
new in a mathematical-physical context or is it only a mathematical nonessential 
resulting from the manner in which we discretized time or applied our boundary 
conditions? Perhaps it is a combination of both? 

There are several ways of proceeding toward a global or detailed analytic 
understanding of this phenomenon. A mathematical approach to the generic 
properties of classical discrete Hamiltonian systems has been started by G. D. 
Birkhoff, K. Siegel, A. N. Kolmogoroff, V. I. Arnold, J. Moser, and Ya. G. Sinai and 
many others in recent years [20]. Kolmogoroff, Arnold, Moser, and Siegel (KAMS) 
have proved theorems that show: If one obtains a nonintegrable system by “weakly” 
perturbing the structure of an integrable system, then there still remain parameter 
regions where the quasiperiodic solutions of the integrable system persist. That is, 
with an appropriate choice of initial data, “invariant tori? of integrable systems may 
not be destroyed under a weak structural perturbation (i.e., a modification of the 
equations or boundary conditions). Although nonintegrable, the cubic lattice with 
appropriate initial conditions yields solutions that are “close” to solutions of 
integrable systems, like the Toda lattice, as described below. 

A second “continuum” or partial differential equation approach may be adopted 
because we observe that only the low modes of the system participate in the 
dynamics. This assumption was first presented by M. D. Kruskal in 1960 in a 
stimulating seminar on unsolved mathematical-physical problems [ 211. He discussed 
the “breakdown” paradox [22] (also discussed below) which prompted me to join 
him to unravel the FPU problem, and we are led to Hypothesis 2. 

H2. The near-recurrence phenomenon and the detailed modal history can be 
explained by a continuum model. 

We assume that the displacements y,, i can be written in terms of the displacement 
y,, and its derivatives by means of the Taylor series 

Y nil -+ (Y f hy, + (h2/W,, f (h3/W,,, + (h4/Wy,,,, + O(h”)]l,=,,. (12) 

If we substitute in (9) we obtain 

ct*~tt = (1 + EY,)Y,, + (h2/12b,,,, + W2/W,,,y,, + O(h4) + O@h4L (13) 

where E = 2ah and ci = h2cui is the propagation speed of waves in the lowest 
continuum linear limit, viz., E = h = 0. In our case we normalize the length of the 
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lattice so that L = (N + I)h = 1. If a = O(l), then E = O(h) % h2, and the lowest 
continuum limit is the nonlinear hyperbolic partial differential equation 

Y,, = c;v + V,)Yx,- 

The initial-boundary conditions corresponding to the FPU problem are 

(14) 

y(x, 0) = a sin 7~x, Y,(X, 0) = 0, y(0, t) = y( 1, r) = 0. (15) 

Remark 1. Temporal discretization. FPU noted that the recurrence time varied if 
(At) in Eq. (8) varied. This can be explained by taking the continuum limit of (8). 
The leading truncation error term is (dt)*/12)y,,,, CC (c~(At)*/12)Yxxxx t ... . Thus, 
to lowest order, temporal discretization modifies the coefficient of the fourth spatial 
derivative. I 

Kruskal assumed periodic boundary conditions for (14) and by a heuristic 
asymptotic derivation, he obtained the first-order hyperbolic equation 

rt + cL( 1 + &r/2) r, = 0, (16) 

where, to zero order, 

r = j(*ci’y, + y,) t O(E). (17) 

If we transform to a coordinate system moving with velocity cL and substitute 

r = &CL t/2, r=x-cC,t 

we obtain 

rr + rrI = 0. (18) 

Equation (18) can be solved by the method of characteristics as the implicit function 

r=R(r-rr), (19) 

where 

The 4 derivative of r is 

r(C 0) = R (0 

rI = R’/( 1 t zR’) (20) 

and the denominator vanishes when r, = min(R’) if min R’ < 0. Thus, the third and 
higher derivatives (which were omitted in writing (16)) become singular in a finite 
time. That is, the solution “breaks down.” The normalized breakdown time is 

t,/t, = 2/can*, (21) 
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or it is inversely proportional to the ratio of the nonlinear to the linear term. The only 
evidence that something occurred at this time in the modal energy diagrams of FPU 
was a local maximum of the second harmonic, as seen in Fig. 2. 

Remark 2. Discrete or continuous model. Equation (14) is really the one that 
FPU had in mind for their investigation. On the first page of their classic paper 
[ 18, p. 9791 they say, “We imagine a one-dimensional continuum... . For the purposes 
of numerical work this continuum is replaced by a finite number of points (at most 
64 in our actual computation) so that the partial differential equation defining the 
motion of this string is replaced by a finite number of total differential equations.” 
Also, FPU did not realize that the continuum representation would not describe the 
discrete representation for all times. In fact, in their original memo they presented 
graphs of y,(t) vs n and not (v,+i - y,) vs II, which would have been much more 
suggestive of the breakdown phenomena. Ornstein and Zernike in 1914 [23] used 
(14) to study the thermal conductivity problem by perturbation methods, without 
much success. I 

This behavior raises three questions related to modifications of the equation and 
boundary conditions: 

(1) Does the second-order hyperbolic equation (14) with fixed or periodic 
boundary conditions exhibit breakdown in a finite time? 

(2) Does the lattice problem with periodic boundary conditions exhibit solutions 
similar to those of the fixed boundary problem? 

(3) How must one modify the lowest continuum equations to model the lattice 
solutions beyond breakdown? 

The first two questions were answered in the affirmative, the first by analysis and 
the second by computation. 

In 1962 [24], I used the hodograph transformation to linearize (14) exactly and 
obtained the Euler-Poisson-Darboux partial differential equation. In an involved 
calculation, I was able to prove the existence of breakdown. With this insight P. D. 
Lax 125 ] presented in 1964 a simpler analysis and showed the conditions for 
breakdown for the class of equations 

Y,, - F(Y,) Yxx = 0. 

The discussion of breakdown has now become a branch of analysis for systems of 
nonlinear hyperbolic differential equations. 

In December 1962, at the American Physical Society meeting in Standord 
California, I presented the first calculations for the lattice with periodic boundary 
conditions. I showed the modal diagrams which answered question 2 in the affir- 
mative; namely, it showed near-recurrence and the property that the location of the 
maxima of the prime numbered modes, np, divides approximately the interval t, /tL 
into np parts. This is evident in Fig. 2 for n,, = 2, 3 and in [ 191 for np = 2, 3, 5, 7, 9. I 
also showed Figs. 3a, 3b and 3c (not heretofore published) which were motivated by 
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FIG. 3(a). Waveforms of @*y,/lOh*) and (64y,/104h4) vs n at t = 10, for the cubic lattice with 
periodic boundary conditions and N = 64. The value of the minimum and maximum of (#~~,/10h*) at 
t = 0 and n = 16 and n = 64 is shown by the rectangle below and above 0.8. (b) Trajectory of the 
Max la4y,,/104h’l vs n for 0 <t < 85. For the cubic lattice with periodic boundary conditions and 
N = 64. (c) Continuation of Fig. 3b. Note that the horizontal and vertical scales of(c) are different from 
those of (b) and they are displaced. 
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the breakdown phenomena. Namely, if yX cc r becomes singular for solutions of (9) 
and (10) then the discrete analog of y,. and y,,, should also become large. Thus, we 
plotted (@y,/lOh*) and (s4y,/104h2) vs n at t = 10 (breakdown) and the maxima and 
minima of y,, (,, cc (6*y,/h*) for comparison. It is evident that 6*y,/h* has grown by 
a factor of 40. We anticipated some kind of “nonlinear wave,” and plotted the 
location of Max 164y,/h4). The breakdown and recurrence times are labelled as well 
as the time of second- and third-mode maxima. In the rectangular boxes, we see the 
values of Max 164y,/h4) grow from 68.1 at t = 0 to a maximum of 2.8 X 104. After 
breakdown we see the trajectory has an average velocity to the right with interludes 
where the velocity is zero and small intervals where there is an apparent large 
rightward velocity (or “phase shift”). In retrospect, the qualitative features of this 
trajectory diagram can be explained in terms of the soliton concept discussed below. 
However, at that time all we had was an estimate of the velocity of the leading 
“nonlinear” wave. Note that Figs. 3b and c differ in scales so comparison is 
awkward. Also note that we have only near-recurrence; that is, Max 1 d4y,/h4 ( did not 
drop below 2.1 x 103. 

Remark 3. Synergetics and graphics. I emphasize here that the benefits of the 
synergetic approach are dependent on the type of graph drawn. As in a laboratory 
experiment, one must be alert to recognize small effects that may signal new 
phenomena. Often one views the results of a computation according to some precon- 
ceived “intuition.” Generally, I have found, for these nonlinear dispersive wave 
problems or where coherent entities interact and preserve some of their a priori state 
(e.g., in vortex dynamics), that the description according to interacting normal modes 
(or global basis functions) is unrewarding for making decisive progress. Following 
the trajectory of extrema can be very useful although sometimes the picture is 
confused because of large amounts of “noise.” In Remark 7 we return to a more 
complete review of graphics and software. ! 

As for the third question, I suggested [19, Sect. 61 that the fourth derivative term 
alone in the continuum expansion for (9) could account for the recurrence time. This 
suggestion was based on a parameter-balance argument from which a recurrence time 
that scaled like (11) was obtained. Thus, we focussed our attention on the partial 
differential equation 

0 = CL ‘Y,, - (1 + &Y,) Y,, - th*/ 12) y,,,,. (22) 

We emphasize that this additional term is the first term in an expansion that takes 
into consideration the discreteness of graininess of the medium. As noted in 
Remark 1 the coefficient of yXXXX does not include the effect of time discretization. 
Note that the linearized form of (22) represents a dispersive medium with dispersion 
relation 

(w’/c;) = k2 - (h*/ 12) k4. 

For k > ( 12)Y2h-‘, w* < 0 and unstable modes arise as described in Remark 8. 
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However, it is inappropriate to consider these large wavenumbers in a model obtained 
by assuming a long-wavelength expansion. That is, if small-wavelength states arise 
from nonlinear interaction, the model must be revised. 

At this stage, Kruskal and I applied some of the ideas contained in his work on an 
asymptotic theory for Hamiltonian systems having almost periodic solutions [26], 
and we developed a uniform asymptotic method for treating equations like (14) [ 271. 

To study (22), we introduce quantities which were the Riemann invariants of (14) 
namelv, 

r* = f{*c,ly, + f&K’)[(i + &yJ3’* - I]}, 
(23) 

and obtain the coupled equations 

c;‘(r& r [ 1 + ;E(T+ + r-)I@,), 7 (h2/24)(r+ + r-)Xx. = O(E*) + 0(&h*). (24) 

If we take r+ ],, = 0 and assume r- (,, is a function having zero mean, it can be 
shown that r+ is always O(e2). Thus, we can omit it from (20) and we are left with a 
third-order equation for r- = u. If we transform into a frame of reference moving 
uniformly with velocity cL, that is, x --) (x - cLt) and t--t r, we obtain the 
Korteweg-de Vries (KdV) equation 

u, + uu, + d2u,, = 0, (25) 

where 

r = &CL t/2 and 6* = h*/12&. (26) 

This equation was first obtained by Korteweg and de Vries as the quintessential 
equation for describing long-wave propagation on shallow water [ 281. Gardner and 
Morikawa [29] rederived this equation and also showed that it was the limiting 
equation for describing long-wave propagation perpendicular to a uniform magnetic 
field in a cold lossless (collisionless) plasma. Since 1963, many investigators, e.g., 
[30] have derived the KdV equation as the relevant long-wave asymptotic description 
of a more complete set of model equations. (See J. W. Miles’ historical essay on the 
KdV equation [ 3 1 I.) 

For fixed initial conditions, the solutions are a one-parameter family, e.g., d2. The 
equation is sometimes written with the parameter suppressed, or 

ut - 6uu, + u,., = 0, (27) 

and the “amplitude” of the initial condition is the parameter. The number 6-* is a 
dispersion number in analogy with the Reynolds number of dissipative 
hydrodynamics. Earlier, F. Ursell [32] noted that this number played a role in 



208 NORMANJ.ZABUSKY 

resolving the Stokes paradox with respect to nonstationary surface water waves. 
Note, if one includes surface tension, 6* may change sign. 

This brings us to Hypothesis 3. 

H3. The Korteweg-de Vries equation 

24, + uu, + &4,,, = 0 (28) 

can describe propagation of small-but-Jinite amplitude long waves on a lossless 
“cubic” lattice excited by a progressive wave initial condition. 

This equation is the simplest nonclassical nonlinear partial differential. The 
Burgers’ equation 

24, + uu, = pu,, 

is parabolic and was solved exactly by Hopf [33] and Cole [34] in the early fifties 
with a transformation $ = exp[jX d( u(& r)] that yielded an equivalent linear diffusion 
equation in $. Could we find an exact solution to the KdV equation? It seemed rather 
difficult because of the wave-like nature of the equation. We knew several facts. First, 
we could write (28) in conservation form, Tt + XX = 0, or 

0 = (u), + [iu” + 62uxx]x, 

0 = ($4’), + [&” + 8*(uu,, - +f;)],. 

The first is obtained by inspection and the second if we multiply (25) by u and 
integrate by parts. Second, we knew of the localized stationary solution 

u(x, t) = U(x - ct) = u,, + A sech*[(x - ct)/d ], (29) 

where 

c = u, + A/3 and A2 = 126’/A, (30) 

and of the periodic solutions, the so-called “conoidal waves.” We tried to apply 
straightforward perturbation methods without much success. 

We then turned to a numerical simulation of (28) with periodic boundary 
conditions and with an initial condition corresponding to a long progressive wave on 
the lattice. We used a “leap-frog” numerical scheme which conserves momentum and 
“almost” conserves energy (more about numerical algorithms in Remark 6). We 
found near-recurrence and very good agreement with the modal energies of the cubic 
lattice equations (including the fact that prime-numbered modes divide the recurrence 
interval into nearly equal parts). These results were reported by M. D. Kruskal in 
1963 [35] without much understanding of details or of the “why” of recurrence. 

REMARK 4. Numerical asymptotics. We have found close agreement between 
numerical solutions of two systems, the latter (KdV) being derived from the former 
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(cubic lattice) by an asymptotic procedure. It would be interesting to run both 
systems for many near-recurrence periods and examine the divergence of the 
solutions. Tuck and Menzel [36] did this for the cubic lattice and observed that the 
near-recurrence of the first-mode energy became poorer. However, after 7 near- 
recurrence intervals the process reversed and after 14 intervals the first-mode energy 
was larger than after the first near-recurrence interval. We note, as discussed below, 
that the KdV equation is an integrable Hamiltonian system whereas the cubic lattice 
has not been shown to have this property. Thus, eventually, one expects the cubic 
lattice to show energy equipartition among all the modes [37]. 

G. S. Deem had recently joined Bell Labs at Whippany and assisted us with the 
programming and graphics. Although we pored over numerous polar diagrams of 
modal energy vs modal phase they told us little of what was happening. So we began 
to study waveforms of u(x, t) and ux(x, t) and quickly realized the essential-namely, 
the solitary-wave solution (29) was the entity dominating the evolution of the 
waveform. These coherent entities “emerged” from the cosine initial stated and 
oftentimes “merged” with others of different amplitude to form smooth regions which 
proceeded to decompose again into the same coherent entities which had assembled 
to form the smooth region. 

3.2. The Heroic Period (1965-1971) 

In 1965, we published these results [38] and Fig. 4 contains waveforms of u and 
Fig. 5 contains the trajectory of maxima of the waveforms to a time slightly greater 
than if,. M. Toda [39, Sect. 2.71 reconstructed the interval from ft, < t < tR, giving 
a more pleasing view. (A detailed examination of the trajectories of maxima in the 
vicinity oft, and the waveforms at fR, 2t, and 4tR was recently given by K. Abe and 
T. Abe 1401.) The solid lines of Fig. 4 show the crests of these waves when they are 
discernible. When they interact with others they “accelerate or decelerate” giving a 
phase shift. The remarkable stability induced us to call them “solitons” for they 
seemed to have an intrinsic identity. These results were so dramatic that Deem and I 
summarized them in a computer-generated tine-film [41]. It’s now in the Bell Labs 
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FIG. 4. Solutions of the Kortewepie Vries equation (6 = 0.022) at three different times. 

58 l/43/2-2 
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FIG. 5. Trajectories of maxima of the Korteweg-de Vries equation (6 = 0.022) on a space-time 
diagram beginning at t = 0.1 I, = 3.04t,. 

film library and I believe it has been and will continue to be a source of inspiration to 
researchers and students. 

A soliton is now defined as a localized or solitary entity that propagates at a 
uniform speed and preserves its structure (or shape) and speed in an interaction with 
another such solitary entity. The result of such an interaction is usually a phase shift. 
To further determine the validity of the soliton concept, we performed scattering 
experiments with two well-separated solitons. For convenience, we used periodic 
boundary conditions and observed interactions with phase shifts and the return to 
initial shapes and speeds [5]. In a rigorous analysis, P. D. Lax [42] delineated the 
amplitude ratio regimes for two interacting KdV solitons. 

F. D. Tappert and R. H. Hardin, then colleagues at Bell Labs, produced numerous 
films with 6’ varying over a factor of 100. They used a split-step Fourier algorithm 
[43] suited to problems with periodic boundary conditions. The top of each frame 
contains two periods of the waveform and the lower part contains 10 decades of the 
Fourier transformation of u*. Their data and other lattice results allowed us to obtain 
Fig. 6, tR vs 6-l [44], which showed again the correspondence of the cubic lattice 
with the KdV. A crude estimate was made of the recurrence time by considering the 
exchange and focussing of solitons on a line [45]. This estimate was improved by M. 
Toda [39], who included phase shifts. 

Since FPU also solved the “quartic” lattice and observed near-recurrence, it 
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FIG. 6. Normalized recurrence time as a function of dispersion parameter for the Korteweg-de Vries 
equation (KdV) and the cubic lattice (NLL). 

seemed reasonable to solve the asymptotic representation for progressive waves, 
namely, the “modified” KdV (mKdV) equation 

24, + z4pu, + d2uxxx = 0 (P = 2). (31) 

We used periodic boundary conditions and studied the interaction of compressive 
(A 1 = 1.0) and rarefactive (A2 = - 0.667) solitary entities, 

where 

q =Ai sech((x - c,t)/d,), (32) 

A, = 6”26/Ai and ci = A f/6. (33) 

The algorithm is described in Appendix A. The waveform results were also shown 
in the tine-film [41] and the trajectories of extrema are given in Fig. 7 (not 
previously published). Note the phase shifts. This is a demanding numerical 
calculation for the compressive mKdV soliton becomes taller and narrower during 
this interaction, unlike the KdV solitons which become wider and smaller during 
interaction. 

At this time we became aware that G. B. Whitham had obtained a third conser- 
vation form for the KdV equation [46], 

0 = <+4’ - h4:), + [$A” + 82(u2u,, - 2uu;) + 84(-2#,U,,, + &)],. (34) 
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FIG. 7. Trajectories of extrema for the interaction of two solitons of the modified KdV equation 
(31) with A, = 1.0, A, = -0.667 in Eq. (32). 

So we began to look for and found two more conserved quantities 

4 9 
P’ = + - 362uu~ + 5 64u&, 

p5’ = L u5 - f#u2u~ + F 84uu;, - $f- ih~,,. 5 (36) 

R. Miura joined us in this effort and he was able to find five additional conserved 
quantities. There seemed to be no end. Also, we found that the mKdV had five 
conservations laws and the generalized KdV, (3 1) with p = 3,4,..., had only three 
conservation laws; that is, they are nonintegrable. _ 

The environment prepared by the confluence of these analytical and computational 
results and the stimulation provided by Clifford Gardner, John Greene, and Martin 
D. Kruskal at the Plasma Physics Laboratory induced Robert Miura to assert the 
next analytical hypothesis. 
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H4. There exists a transformation between the KdV and mKdV equations. 

After much formal algebraic manipulation, he found the beautiful transformation 
that hailed “open sesame” to the gates hiding the wonderland of solitons. He was able 
to prove [47]. 

THEOREM. If v is a solution of the modified KdV equation 

Q(v) = v, - 6v*v, + vi,,* = 0 (37) 

then 

u=d+v x (38) 

is a solution of the KdV equation 

P(u) 3 ut - 6uu, + u,,, = 0. 

Direct substitution yields 

Pu = [2v + a,] Qv. 

(39) 

(40) 

So if Q(v) = 0 then u satisfies the KdV equation. 
Transformation (38) is analogous to the Hopf-Cole transformation for linearizing 

Burgers’ equation, except that we are transforming between two nonlinear equations, 
neither of which is apparently solvable. Is it possible to use the transformation to 
gain insight into the analytical solution of the KdV equation? 

Using this transformation, Gardner and co-workers [48], in an ingenious proof, 
showed the existence of an infinite number of conservation laws. To accomplish this 
he generalized (38) to 

u = w + EW, + E2W2, (41) 

where the parameter E has been introduced and w satisfies the Gardner equation [49] 

Rw E w1 - 6(w + E*w*) w, + w,,, = 0, (42) 

if u satisfies the KdVequation. Proceeding by substitution we find 

0 = Pu = [ 1 + &a, + 2c*w] R(w), (43) 

where R(w) need not be zero because of the additional term. Since w depends on x, t, 
and E we can write a forma1 power series for w 

w(x,t;&)=W,+&W1+&*W*+*-, 

= u - EU, + E*(u* - u,,) + - - * . (44) 
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Now, a formal power series solution of (43) for R(w) yields 

Rw = w, + [-3w2 - 2c2w3 + w,,], (45) 

to all powers in E. Substituting (44) into (45) yields a conservation law for the KdV 
equation as the coefficient of each power of E and there is an infinite sequence of such 
terms. Note by this procedure they also established an infinite sequence of conser- 
vation laws for the mKdV and Gardner equations. 

With this information the barriers to the analytical domain vanished. After a 
flourish of activity, the KdV equation was transformed to an isospectral eigenvalue 
problem [50], [51]. That is, (38) is a Riccati equation in u and if 

then it linearizes to 

v = wxfw (46) 

ICI xx - uy = 0. 

Since the KdV equation is Galilean invariant, we may insert a constant 
(corresponding to a transformation to uniformly moving frame of reference) and 
obtain the eigenvalue problem 

wxx + (A - u(x, t))v = 0, (47) 

where u is a potential in which t is a parameter. One finds that the discrete eigen- 
values 1, (and the remainder of the spectrum) remain invariant if u evolves according 
to the KdV equation. Each 1, corresponds to a soliton amplitude and the properly 
normalized ] ~~1’ are the solitons that emerge from U(X, 0). There also exists an 
oscillatory state (corresponding to the continuous spectum), For early times, the 
nature of the latter was clarified in my numerical study [52]. 

During this period and unknown to the Princeton-Bell Labs group, M. Toda found 
a lattice system [53] which supported solitary and periodic waves. The interaction 
potential has the form 

V = (a/b) eCbrn + ar, + cons& (ab) > 0, (48) 

and the equations of motion in dimensionless form can be written as 

fe = -[e-rn+l _ 2e-‘n + eern-I], (49) 

or 

8, = exp[-Q, + Q,-,I - exp[-Q,+l + QA (50) 

or 

iJ(1 +s’,)=s,+~-2s,+s,-,, (51) 
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with 

s’, = e -rn - 1 and &=S”--“+I’ (52) 

He also displayed a soliton solution (48) 

e -rn - 1 = j?’ sec*(an r Pt), /? = sinh a. 

As Toda indicates and Ford confirms [54], the above developments were stimulated 
by the numerical results of Ford and Waters [55]. In 1968, when I attended the Inter- 
national Conference on Statistical Mechanics in Kyoto, he showed me formal 
analytic calculations of a two-soliton interaction [56]. I was amazed because of my 
“intuitive” belief in the difficulty of treating discrete nonlinear systems and because 
he could treat the interaction of left- and right-going nonlinear waves. (See my 
comment at the end of [56].) 

A numerical simulation by Saito et al. [57] seemed to suggest soliton decay on the 
Toda lattice. J. Ford, one of the contributors to energy sharing problems of cubic and 
quartic lattices [55], remarked [58], 

. . . everyone including me thought that the Toda lattice was non-integrable. Thus, as we 
began the studies described in the enclosed 1591 we were convinced we were going to observe 
non-inegrable behavior (i.e. soliton decay). Indeed, we were so certain of this that we were 
performing the study only as a preliminary to studies of the Toda lattice with unequal masses. 
Then much to our surprise every test we ran indicated integrability. Eventually, we became 
convinced of integrability and sent the enclosed off to Prog. Theor. Phys. [59]. At the same 
time, we sent preprints to Henon [60], among others. Then, my God, by return of mail, we 
received the complete set of integrals for the Toda lattice from Henon. He noticed that one 
could easily get the Toda integrals (constants of the motion) directly from t’he integrals of the 
hard point gas. Within a day or so of receiving the complete set of integrals from Henon, 
Herman Flaschka [61] passed through Atlanta... . When I advised him of the recent 
happenings, Herman reached into his briefcase and pulled out his recent calculations on the 
Toda lattice using a version of inverse scattering that he had just developed. Within a few 
hours, he calculated the Henon integrals using inverse scattering theory. [The reference 
insertions are mine. ] 

Remark 5. Sine-Gordon result. Fermi, Heisenberg, Ulam, and others pointed out 
that field theories for elementary particles could be nonlinear. Perring and 
Skyrme [62] studied what is presently called the “sine-Gordon” equation 

4 xx - c-*q,, = 2 sin q, (53) 

as a model for a nonlinear meson field theory. The equation has been known in 
differential geometry since the end of the last century [63] and first arose in modern 
times as a model for the one-dimensional movement of dislocations in solids [64,65]. 
Equation (53) is Lorentz invariant and can be transformed to “light-cone” or charac- 
teristic coordinates, or 

a,,q = ~~ sin q. (54) 
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Perring and Skyrme found stationary solutions in a frame of reference moving with 
velocity U, or if s = (x - vt)/(l - v’) then (53) with c = K = 1 becomes 

d2a/ds2 = sin a, (55) 

and solutions are 

sin(+a) = *k sn[ (i(s - s,); k)], 

= fcn[k-‘(s -s,); k], 

v > 1, 

v<l 

(56) 

(5% 

or 

a = 4 tan-‘{exp[f(s -so)]}, v< 1, (57b) 

where sn and cn are the Jacobi elliptic functions and 0 < k < 1. The (k) signs in 
(57b) refer to solutions that are commonly called particles, kinks, or fluxons (+) or 
antiparticles, antikinks, or antifluxons (-), respectively. 

In the synergetic mode, they computed numerically two-“particle” interactions by 
having one particle approach the boundary x = 0 where q(0, t) = 0 was imposed. To 
their “surprise” they found elastic scattering and then sought and found the 
corresponding nonlinear solution for particle-particle collision, 

tan(a/4) = v sinh[x/(l - v’)“‘]/cosh[vt/(l - v*)“*], (58) 

and for a particle-antiparticle collision, 

tan(a/4) = v-l sinh[vr/(l - v’)“‘]/cosh[x/(l - v*)l’*]. (59) 

No further work came from this computational probe. 
Why was this pioneering salient lost? One possibility is that the majority of 

elementary particle physicists, at that time, believed in linear field theories. 
Furthermore, they felt that there was little insight to be gained from one-space dimen- 
sional problems. Another, more probable, explanation is that the computational 
ambiance was neither broad nor valued. Nor was the simulation data base invested 
with structure that is required to sustain creative momentum to overcome the barriers 
of “establishment” intuition. In the third period, Makhankov and colleagues, 
Bialynicki-Birula and colleagues, and Simonov and Tjon are using the computer to 
study two- and three-space dimensional problems relevant to elementary particle 
physics (as described in Section 4.4). 

Remark 6. Numerical algorithms. The nonlinear lattice results were obtained 
with the simple centered time-dependent algorithm (8). The initial studies of the KdV 
and mKdV equations were made with a centered 3-level (explicit) leap-frog 
algorithm, as described in Appendix A for the mKdV equation. These were designed 
to conserve Cn u(n At, t) at alternate time levels and to conserve C,, u’(n Ax, t) in the 
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limit (“semi-continuous”) where time derivatives are considered exact. No scheme 
was found to conserve the discretized version of p3) in (34). 

Our algorithm gave stable results for the two-soliton interaction studies, but 
developed a typical leap-frog instability prior to jt, or tR for the evolution of sine- 
wave initial conditions. Kruskal and I overcame this with a dissipative restart 
procedure. That is, we obtained restart waveforms at levels n t 1 and n from 
averaged data at levels (n t 2, n t 1, n) and levels (n t 1, n, n - l), respectively. For 
the run in the movie we did this just before ft, but not before tR, and so were able to 
see a spatially localized “flicker” develop that seems to be an indicator of a 
developing nonlinear instability. This four-level filtering process is equivalent to 
introducing dissipation for a small time interval and may account for the somewhat 
smoother near-recurrence waveform that we observed as compared to the results of 
Abe and Inoue [66], obtained by spectral methods. 

Many algorithms have since been developed. Some are discussed by Eilbeck in a 
thorough and balanced review [67]. Recently, Fornberg and Whitham [68] gave an 
account of the application of a robust and accurate pseudospectral method to the 
generalized KdV equations 

and to 

u1 t upu, t u,,, = 0 (P = 1,293, and 4), (60) 

u, t uu, t I K(x - t) ut dt, K = (v/2) e-“‘x’, (61) 

and other equations all with periodic boundary conditions. Their paper is a balanced 
blend of asymptotic and stability analyses and computer simulations with parameters 
chosen to illustrate numerous interesting effects. The paper is brightened with good 
oblique-projective graphs of waveforms and summary graphs. Appendix B contains a 
good discussion of numerical instabilities (they also observed the temporal leap-frog 
instability discussed above) and aliasing in pseudospectral algorithms. 

As with pioneering experiments in physics using rudimentary apparatus, the early 
algorithms provided high-quality detailed information which stimulated insights for 
analytical progress. However, the next steps will require more accurate and more 
efficient algorithms. An illustration is the recent works of Ablowitz, Kruskal, and 
Ladik [69], Bogolubskii and co-workers [70], Bona, Pritchard and Scott [7 I], 
Santarelli [72], and Lewis and Tjon [73], who examined the interaction of two 
solitary waves for systems that are presently known to be nonintegrable (namely, 
ones that do not have an infinity of conservation laws). The last three groups studied 
the “regularized” long-wave RLW equation 

u, t 24, t uu, - U,,f = 0, 

which has the solitary-wave solution 

u=A sech*[(x-ct)/d], A = [(4A t 6)/A]“*, 

(62) 

c = 1 t 2A/3. (63) 
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Bona ef al. found an oscillatory state was left behind whose maximum amplitude 
(over several runs) was about 1.1% of the smaller (overtaken) solitary wave in a 
head-to-tail interaction. Santarelli and Lewis and Tjon chose amplitudes A, > 0 and 
A, < -(3/2) so that c, > 0, c2 ( 0 and the solitary waves were head-on. The inelastic 
effect was much greater and additional solitary entities appeared. 

Remark 7. Graphics. As our analytical insight matured, the character of the 
graphical representation became focussed on particular phenomena. FPU plotted 
waveforms y,(t) and modal energies as ‘shown in Fig. 2. When it became clear that 
progressive waves with boundary periodic conditions contained the same effect, we 
began tracking trajectories of waveform extrema; this proved informative, for it 
allowed us to see phase shifts arising from localized entity interactions. 

This “Riemann-invariant” filtering was applied to a cubic lattice with periodic 
boundary conditions that was strongly excited with a low-mode progressive wave. 
That is, if a discrete approximation to the Riemann invariant is 

~*(n,t>=f{~4’,+5(~/a)[(l+2a(~,+,-~,))~’*- 111 (1 <n<2W, 

then I chose 

y,(O) = a sin(rrn/N) (1 <n<2N) 

and 

so that 

i, (0) = 0. 

This smooth initial condition with a = 10.132 (&), a = 1, and = 100 evolved to 
breakdown at one-half a linear period (t,/t, = 4) and formed about 46 “localized” 
entities each about four lattice-intervals wide, as shown in Fig. 8. The trajectories of 
max, f-(n, t) were tracked and the velocity-amplitude diagram of Fig. 9 was deter- 
mined. The recurrence time was estimated on the basis of the location the maxima of 
the prime-numbered modes. However, at t/t, slightly greater than 5.5, the solution 
became singular and the computation ceased. Apparently, this resulted from an 
interaction that caused one particle to exceed the confining potential energy of a 
cubic lattice as described in Eq. (6) above. Recently, Ferguson et al. [75] developed a 
perturbation method using action variables of the Toda lattice as basis functions for 
strong nonlinear excitations of the cubic lattice; their method is “... partly rigorous, 
partly heuristic... .“’ However, for the duration of the simulation just described, they 
identify 19 of the 46 localized entities as analogs of Toda-lattice solitons and the 
remaining entities as “... near-linear wave packets.” 

The oblique projections of IJ(X, t) developed by the Manchester group (Bullough, 
Eilbeck, Caudrey) have provided useful and artistically pleasing global summaries of 
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RUN 68-20, ts/ta =I/2 

FIG. 8. Riemann-invariant filtered waveforms ?-(n, t) for a cubic lattice with an initial strong 
progressive wave excitation that causes breakdown in one-half a linear period, curve B. 
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FIG. 9. Lattice solitary-wave speed vs amplitude diagram. Note that the smallest pulses are 
travelling at the linear group velocity. 
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nonlinear wave phenomena. For example, Fig. 10 gives ~(x, t) for the interaction of 
two solitons of the nonlinear Schrodinger equation (79). The phase shift of the right- 
going soliton is evident. Figure 11 shows ~(r, t), solutions of the cylindrically 
symmetric sine-Gordon equation with a localized impurity current j(r), 

where 

vr, + r-‘vr - vtt - j(r) sin w = 0, (64) 

j(r) = 1 + a sech’(r - R,). 

Exhibited are nearly two periods of a permanent oscillation of a cylindrically 
symmetric “pulson.” The pulson “falls” toward the origin and is reflected by the 
localized impurity current at R i . If one adds a damping term, the oscillation decays. 
However, if one switches on a constant bias (that is, a constant is added to the right 
side of (64)) for an appropriate time interval a tunable periodic oscillation is obtained 
[76]. The collapse time of analogous moving entities was first studied numerically by 
Bogolyubsky and Makhankov [77]. They investigated the three-dimensional nonlinear 
Klein-Gordon equation Q4), excited initially with a radially symmetric solitary wave 
solution. Cylindrically symmetric studies of the sine-Gordon equation were indicated 
by Makhankov [78, Sect. 7.31 and described in detail by Christiansen and Olsen [79]. 
Figure 12 shows sin($(x, u)) at various t [80]. Here w is the solution of the full two- 
dimensional sine-Gordon equation with boundary conditions that simulate an 
interaction between expanding ring and anti-ring “solitons” (or pulsons). The initial 
condition (not shown) is a circular ring-soliton. We see the ring soliton moving 
outward and reflected by the anti-ring soliton (the boundaries x = const.) and 
emitting radiation. 

The use of color and cinema can greatly enhance the perception of small unex- 
pected phenomena. They also provide other “parameters” to aid the retention process. 
This enhances the mind’s ability to recall and correlate old and new results. Figs. 13a 
and b contain black and white renditions of color photographs provided by S. T. 
Zalesak and S. L. Ossakow. (Unfortunately, the economics of publishing require this 
compromise.) The two frames at t = 0 and t = 1300 show the unstable evolution of a 
small perturbation in the ion density at the bottom of the ionosphere into a rising 
low-density plasma “bubble” [81]. These are finite-difference solutions of 

a,n + a,(m) + a,(w) = -vR n, 

v * (Vi”IZ V#) = -FinE,axn and (% u> = WcJ(-%A a,419 
(65) 

where the variables n, 4, u, b, are functions of x, y, and t; vR and vi,, are prescribed 
functions of y; and ci,, E,, c, and B, are constants. We see small electron-density 
regions (blue = B and turquoise = T) have been convected up into the large electron 
density (red = R) region, a small effect difficult to observe in black and white contour 
plots, e.g., Fig. 13c at t = 1364. 

Easy-to-use computer languages are being developed that will aid in producing 
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FIG. 10. Oblique projections ~(x, I) of two-soliton interactions. Solutions of the nonlinear 
Schrodinger equation iy/, + v/,, + KY / v/j2 = 0 with initial conditions ~(x, 0) = 
l.S[sech(l.5(x - 10) eC0.3’J(X-1sn + sech(l.5(x - 20)) e-iu’~37s’X-1J)‘], and with boundary conditions 
y/(0, t) = rv(30, t) = 0, 0 < x < 30, 0 < t < 25. 

FIG. 11. Solutions v,(r, I) of azimuthally symmetric sine-Gordon equation with a current impurity 
j(r), vrr + r-‘v, - v,, -j(r) sin I = 0. Exhibited are permanent oscillations of a pulson which has a 
“ballistic” behavior. It “falls” into the origin and is reflected by the localized impurity current at RI. 



FIG. 12. Interaction of a “ring” pulson with near boundaries. sin(fw(x, y)) vs (x. y) at I = 2.0, 6.0, 
8.0, 10.0, 10.0, 12.0 for w,, + v,, - vrr= sin v, with initial conditions: ~(x. y. 0) = 4 tan-’ 
exp(4 - (((x + 3)’ + (y + 7)‘)“‘)/0.436]; q/,(x, y,O) = 4.13 sech[4-(((x+ 3)’ + (y+7)2)“2)/0.436] 
(-10 < x < 10 and -7 < y < 7); and boundary conditions: normal derivative = 0 on boundaries x = 10, 
y = 7, y = -7 and v,(-10, y, I) = 0. This figure was provided by P. Lomdahl and P. Christiansen. 
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FIG. 13. Evolution of small localized perturbation in the lower ionosphere at t= 0 (13a) into a 
rising plasma “bubble” at I = 1300 (13b). The horizontal scale (x) is east-west with the observer looking 
southward. The color code of the ion density n(x, y) is: R = red (1.5 X 10’ - 2.5 X 10’) and orange 
(1.0 x 10’ - 1.5 x IO’); Y = yellow (1.0 X IO’ - 1.0 x IO’) and green (1.0 X 10’ - 1.0 X IO’); 
T = turquoise 1.0 X IO* - 1.0 X 10’) and blue (0 - 1.0 X IO’). Figure (13~) gives contour represen- 
tation of n(x. y) at I = 1364 which is to be compared with Fig. (13b) at I = 1300. This ligure was 
provided by S. T. Zalesak and S. L. Ossakow. 
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cogent still graphics and tine-films, for example [82]. It would be desirable for 
problems of waves and fluctuating or turbulent fluids to develop robust algorithms to 
track and plot extremal lines, areas and volumes in one, two, and three dimensions. 
These diagrams will probably be “noisy.” Spatial and temporal correlations should be 
used to obtain histories of the location of small but important regions when they are 
hidden in a busy background. Color, shading, and alternate view angles will facilitate 
the recognition of these event. A current example is obtained from Siggia’s 
simulations of the 3D Navier-Stokes equations with periodic boundary conditions at 
a Reynolds number, Re = 100 [83]. In Figs. 14a and b we see two views of the same 

FIG. 14. Alternate views of regions of mean-square vorticity excess in a 3D simulation of the 
Navier-Stokes equation at Re = 100 with periodic boundary conditions. The views in Fig. (a) and 
Fig. (b) are both from the first quadrant. This figure was provided by E. Siggia. 
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FIG. 14-Continued. 

periodic box. The shading covers regions where the mean-square vorticity exceeds a 
prescribed magnitude. Changes in this magnitude do not change the qualitative 
appearance of the vortex tube. These tubes are believed to be generated by a balance 
between vortex stretching and viscous diffusion. 1 

P. D. Lax, who was close to our analytical and computational milieu, took the first 
steps in the direction of mathematical generalization by introducing an operator 
notation [42]. He noted the invariant quantities I p”) dx and the invariant eigen- 
values of 

L =d2/dx2 +(u/6), (66) 

581/43/2-3 
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(for (28) with 6’ = 1). He asked how the potential u(x, t) could be varied such that 
the eigenvalues of L(t) remained invariant. For such a deformation, L(t) must have a 
unitary equivalence 

v*(t) L(t) qt) = L(O), (67) 

for the one-parameter family of unitary operators U, which have the property 

U,=BU, (68) 

where B(t) is antisymmetric, or 

B* = -B. (69) 

Differentiating (67) and using (68) and (69) we obtain 

L,=BL-LB= [B,L], 

where L, = ut is a scalar operator. He observed that (69) has an infinite sequence of 
solutions B,, B,, B, ,..., where B, is a linear symmetric differential operator of order 
2q + 1, and 

B 1 = -(d3/dx3) - u(d/dx) - 4 (du/dx), (70) 

satisfies [B, , L] = - &.,. - iuu,. 

- 
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a first-order linear partial differential equation, if u is prescribed. It can be studied by 
the method of characteristics, or 

a!x/dt = 43, + fu (77) 

and 

d#/dt = +u, 4 (along characteristics). 

Thus, the zeroes of ( propagate along characteristics. 
Lax noted [84]: “In a film depicting the time evolution of an initially sinusoidal 

solution of the KdV equation, made by Gary Deem at Bell Laboratories under the 
direction of Kruskal and Zabusky, there are eight clearly distinguishable ‘solitons’, 
each pursuing its own path. It is tempting to try to relate the paths of these solitons 
to the characteristics... .” Thus he was on his way to solving the periodic KdV 
problem. Supporting analytical and numerical work was done by J. M. Hyman [85], 
who showed the exact recurrence of initial (nonsinusoidal) states. He also considered 
cases where a small high-frequency random perturbation was superimposed initially. 

C. Gardner [86] recognized that the periodic KdV problem could be written as a 
Hamiltonian system and showed that if 

I(“‘) = ( T(“) dx, 

where the integration is over one period and pm) 
KdV equation discussed above, then 

are the conserved densities of the 

O=dl(“‘)/dt=l [q][G]dx. {I(m),I(n)}, (78) 

and (J/au) is the Frechet derivative. The last Poisson bracket expresses the fact that 
the constants of motion are in involution, i.e., {Zcm), fi”‘} = 0. Thus, the system 
constitutes a completely integrable infinite dimensional Hamiltonian system-a first 
example of this class. Fadeev and Zakharov [8.7], in a remarkable paper that 
heralded the entrance of Soviet mathematicians, showed independently the 
“symplectic’ structure underlying the KdV equation. We now know this to be a 
property of all integruble system like the KdV, mKdV and sine-Gordon equations. 

Hirota introduced his ingenious “direct” method to construct the N-soliton 
solutions of the KdV equation [88] and the sine-Gordon equation [89]. 

The panorama of possible equations that are exactly integrable was exposed by the 
breakthrough paper of Zakharov and Shabat [go]. They built on Lax’s operator 
approach and introduced a generalized 2 x 2 scattering form to linearize exactly the 
nonlinear Schrijdinger equations (NLSE) 

k + wx, + K I vl*w = 0. (79) 
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This equation was first derived for nonlinear optics, but has since been shown to be 
relevant to nonlinear deep-water waves and intermediate-wavelength nonlinear waves 
on lattices. In fact, it can be derived from the KdV equation in an intermediate-wave 
limit. 

Remark 8. Integrability, instability, “collapse,” and ergodic behavior. 
Equation (22) was called the Zabusky equation by Toda [39] and Kalantarov and 
Ladyzhenskaya [9 11. However, in 187 1, Boussinesq [92] obtained a similar equation 
(with u = y,) from a small-but-finite amplitude long-wavelength asymptotical 
analysis of the shallow water-wave equations. These equations support left-and-right 
propagating waves and are integrable [91]. Despite the stability of solitons, 
Berryman [94] has shown that short-wavelength plane wave perturbations are 
unstable. This follows from the linear dispersion relation. This result implies that 
integrability does not guarantee linear stability of solitary waves. Furthermore, for a 
certain class of large amplitude initial conditions, the solution of (22) can become 
singular or “collapse” [91] in a finite time. This phenomenon was also observed in 
the cubic lattice [74], as described in Remark 7. 

Note the near-recurrent solutions of the cubic and quartic lattice are not obtained 
for the lattice with the “piecewise-linear” force law, also studied by FPU. That is, 
since the force law is not analytic, the system exhibits a more ergodic behavior. 1 

3.3. Generalization, Abstraction, and Application (1972-Present) 

After the exact linearization of the NLSE, analytical results came in a torrent. In 
Fig. 1 of their preface Lonngren and Scott [95] illustrated the exponential surge of 
papers that followed. In particular, Wadati [96] linearized the mKdV equation with 
the 2 x 2 scattering scheme; the Clarkson group (M. J. Ablowitz, D. J. Kaup, A. 
Newell, and H. Segur) built on the Zakharov and Shabat work and introduced a 
simple-and-powerful algebraic procedure that was applied to the sine-Gordon 
equation [97]. They emphasized that the method could be considered a nonlinear 
generalization of Fourier transform analysis for linear problems. 

The analytical mode was now ascendant. Although the evergrowing mathematical 
literature is beautiful and remarkably diverse, it would not serve the computational 
thrust of the present paper to detail it here, Besides, Bullough and Caudrey [98] have 
given a presentation of these aspects. However, I wish to leave the reader with a 
feeling for this penetration into diverse classical areas of mathematics, including: 

‘Algebraic geometry: Multi-sheeted Riemann surfaces; Finite-zoned potentials; 
Abelian varieties and theta functions. (S. P. Novikov, V. E. Zakharov, L. Dikii, V. 
G. Drinfeld, B. D. Dubrovin, I. M. Gelfand, I. M. Krichever, V. B. Mateev,’ S. V. 
Manakov, Yu, I. Manin, H. P. McKean, P. van Moerbeke, E. Trubowitz, etc.) 

‘Differential geometry: Prolongation structures and Backlund transformations. (F. B. 
Estabrook, H. D. Wahlquist, R. Hermann, H. C. Morris, J. Corones, R. Sasaki, F. 
A. E. Pirani, D. C. Robinson, etc.) 
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Commuting operators and nonlinear evolution equations. (P. D. Lax, V. E. 
Zakharov, etc.) 

Integral equations and inverse scattering (or isospectral transform theory). (M. J. 
Ablowitz, D. J. Kaup, A. C. Newell, H. Segur, M. Wadati, M. Toda, V. E. 
Zakharov, F. Calogero.) 

Nonlinear ordinary differential equations and Painleve transcendants. (N. T. Erugin, 
M. J. Ablowitz, A. Ramani, H. Segur, H. Flaschka, A. Newell, B. McCoy, C. 
Tracy, T. T. Wu, A. Fokas, M. Jimbo, T. Miwa, and M. Sato, etc). 

Singular (pole) representation of nonsingular dynamical systems. (M. D. Kruskal, 
W. R. Thickstun, H. P. McKean, J. Moser, A. Airault, D. V. and G. D. Chud- 
novsky, F. Calogero, etc.) 

Asymptotic methods for nonintegrable Hamiltonian systems. (V. I. Karpman and E. 
M. Maslov, V. V. Solov’ev, A. C. Scott, H. Flaschka, D. W. McLaughlin, A. L. 
Mason, etc.) 

Although these developments were stimulated by basic questions in lattice 
dynamics, shallow water waves and magnetohydrodynamics, the application to 
optics, atomic physics, and Josephson junctions were soon realized by R. K. 
Bullough, P. J. Caudrey, J. C. Eilbeck and J. D. Gibbon, and A. C. Scott. Solid-state, 
condensed-matter, and elementary-particle physicists followed. Several papers that 
lucidly review this work include: S. Coleman [99], R. Jackiw [loo], L. D. Fadeev 
and V. E. Korepin [ 1011, and A. Luther [ 1021. 

4. NEW DIRECTIONS 

4.1. Nonlinear Lattices 

The field of lattice dynamic with respect to solitons and heat transport has been 
thoroughly reviewed by Jackson [103]. See, in particular, K. Miura’s 1973 work 
[ 1041 on the cubic and quartic lattices and the Jackson, Pasta and Waters [ 1041 on 
the cubic and quartic lattices and the Jackson, Pasta and Waters [ 1051 study of the 
effect on energy transport of boundary layers adjacent to thermal “baths” in one- 
dimensional lattices. Part III of the film [41] shows the evolution of a cubic lattice, 
excited initially with a local “optical” excitation. Here alternate masses are displaced 
in opposite directions. For weak excitations, we see and immediate coupling to the 
long-wavelength branch which has been validated analytically [ 1061. For strong 
excitations, there is much more energy sharing among all the modes. However, new 
coherent propagating “entities” have arisen. These results have not been explained in 
an adequate analytical manner. 

Studies of realistic lattice systems began with a two-dimensional Lennard-Jones 
model [ 107, 1081. An increase in thermal conductivity with increasing nonlinearity 
was found and an interpretation in terms of solitons was given [74]. Recent progress 
on strong nonlinear waves in realistic one- and two-dimensional systems is given in 
[ 109,110]. 
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Davydov in a series of papers and a review [ 11 I] has proposed a solitary entity as 
a carrier of band energy (“energy of valent vibration”) in an a-helix protein molecule. 
One-dimensional lattice simulations by A. C. Scott and colleagues [ 1121 have 
established a strong coupling between the acoustic and band-energy modes that has 
the appearance of a “lattice-soliton.” 

4.2. Few-Mode Nonlinear Systems 

The behavior of nonlinear, iterative mappings and low-order differential equation 
systems may’also contribute insight into the periodic, quasi-periodic and chaotic (or 
“turbulent”) behavior of fluids, plasmas, biological (“population”) systems, etc. In 
this brief section, I wish merely to illustrate again the impact of computation on the 
development of these diverse topics. The interested reader will find a guide through 
this fast-growing field in the recent reviews [R9, CGlO]. 

Interest in iterative systems arose from possible “biological applications,” etc. 
[ 1131. Work by N. Metropolis, M. L. Stein, and P. R. Stein [ 1141 showed that as a 
parameter 1 is varied, the qualitative behavior of iterates varies in a fashion 
independent of the particular function iterated. In particular, consider x, + i = F(x, , A) 
and specifically 

X “+,=AxJl -x,) and x,+,=Jsinnx,. (8% b) 

For example, for a certain range of L < 1, the iteration yields one fixed point. For 
A, < I < 1, one finds that the cycle is replaced by a cycle of double period, or 

X nt 2 = F(F~-d) 

has a fixed point. This period-doubling or bifurcation process continues until an 
infinite period and hence erratic behavior is attained [ 1151. These problems are 
ideally suited to computer studies which were guided in part by the analytic work of 
Ruelle, Smale, and others of the last I5 years. 

Recently, M. Feigenbaum studied the period-doubling process. To elucidate his 
analysis he notes [ 1161, “I numerically determined some parameters with an eye 
toward discerning some patterns. . . . I immediately perceived the &,‘s were converging 
geometrically . . . as n increased. This observation . . . has never been made indepen- 
dently [and] was already a surprise.” Since a convergence rate is a number invariant 
under smooth transformation he calculated 

and found that it quickly approached 6 = 4.6692... . He continues [ 1161 .“I was 
reminded by P. Stein that period-doubling isn’t a unique property of a quadratic 
map... . I decided to determine L’s in the transcendental case (84b) numerically . . . and 
amazingly [found] the convergence rate was the same 4.6692... .” Thus, he discovered 
a “universal” theory which shows that qualitatively similar equations have identical 
quantitative behavior [ 117). This concept of a period-doubling route to turbulence 
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[ 1181 seems to have been substantiated in some laboratory experiments [ 1191 and 
has engendered an explosive activity in analytical-computational synergetics. 
Feigenbaum notes [ 1201, “the . . . process of idea --f computation --t new idea + new 
computation + . . . which I found amazingly stimulating in its rapid-fire unfolding, has 
seemed to me at the heart of a deeply significant method of performing theoretical 
research.” 

E. Lorenz, in the early sixties [ 121, 1221, became interested in “numerical weather 
prediction” in order to clarify whether statistical (linear regression methods) could 
duplicate the performance of the “dynamical simulation method.” He sought a system 
of equations which has aperiodic behavior and was sufficiently simple so that it could 
simulate a long stretch of weather with a reasonable amount of computation. He 
chose to represent a two-level model of the atmosphere, where thermal gradients 
produce instabilities, by a modal (orthogonal function) representation. He settled on a 
set of 12 ordinary differential equations whose solutions were [ 1211: 

unmistakably aperiodic . . . the statistical forecasting method [was put] to test, and we found, 
incidentally, that it failed to reproduce the numerically generated weather data... . 

During our computations we decided to examine one of the solutions in greater detail, and 
we chose some intermediate conditions which had been typed out by the computer and typed 
them in as new initial conditions. Upon returning to the computer an hour later, after it has 
simulated about two months of weather, we found that it completely disagreed with the earlier 
solution. . . . we soon realized that the two solutions did not originate from identical conditions. 
The computations had been carried internally to about six decimal places, but the typed 
output contained only three, so that the new initial conditions consisted of old conditions plus 
small perturbations. These perturbations were amplifying quasi-exponentially, doubling in 
about four simulated days, so that after two months the solutions were going their separate 
ways. 

It soon became evident that the instability of the system was the cause of its lack of 
periodicity. .., I immediately concluded that, if the real atmospheric equations behaved like the 
model, long-range forecasting of specitic weather conditions would be impossible. . . . The 
inevitable small errors in observing the current weather should therefore amplify and even- 
tually dominate. . . . Still, I felt that we could better appreciate the problems involved by 
studying a simpler example. . . . The break came when I was visiting Dr. Barry Sahxman, . . . he 
showed me some work on the thermal convection, in which he used a system of seven 
ordinary differential equations [ 1231. Most of his numerical solutions soon acquired periodic 
behavior, but one solution refused to settle down. Moreover, in this solution four of the 
variables appeared to approach zero. 

Presumably the equations governing the remaining three variables, with the terms 
containing the four variables eliminated, would also possess aperiodic solutions. Upon my 
return I put the three equations 

dX/dt = -0X + aY, Pa) 

dY/dt = -XZ + rX - Y, (82b) 

dZ/dt = XY - bz. (82~) 

on our computer and confirmed the aperiodicity which Sahzman had noted. We were finally 
in business. 

The dependent variables X, Y, and Z measure the rate of convective overturning and 
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the horizontal and vertical temperature variations, respectively. The damping results 
from internal viscosity and conductivity and u denotes the Prandtl number, while r is 
proportional to the Rayleigh number. These dissipative equations have a “strange 
attractor” for r > rC, 

r,=a(a+b+3)(a-b- 1)-l, 

and if u > b + 1. The characteristic properties of these attractors and their relation to 
aperiodic solutions of forced disssipative systems is under active investigation for a 
variety of physical systems. 

Remark 9. Interactive, rapid turn-around computing. From my observations and 
the above quotations, it is clear that interactive and rapid turn-around computing 
provides an opportunity to concentrate deeply and develop a special intuitive “feel” 
for the results. This noninterrupted mode augments the innovative process. This is 
easy to achieve for systems with a few dependent variables. A similar remark also 
applies to processing and visualizing the data base obtained from long-duration runs 
of large-scale simulations. I 

4.3. Multidimensional Nonlinear Continuous Systems 

In two or more space dimensions we have few analytical results for nonlinear 
evolution equations [ 1241. An exception is the Kadomtsev-Petviashvili (KP) 
equation [ 125 ] 

: u,, + (24, + 4 uu, + ~uxxx), = 0, 

which Satsuma [ 1261 solved exactly for the oblique interaction of N solitons. Miles 
also analyzed the oblique interaction of two plane-wave solitons and has found 
regions of strong “resonant” behavior, which leads to unusual phase-shift behavior 
[ 127-1291. Yajima and colleagues have formulated an extended “Boussinesq-like” 
equation to describe plasma ion-acoustic waves [ 1301 and have examined analytically 
and numerically the interation of two oblique soliton solutions [ 13 11. 

Generally, one expects that most physically realistic multidimensional systems are 
nonintegrable. The computer must again be called on to provide heursitic results and 
validate perturbation methods. Even for integrable systems, where waveforms and 
numbers (e.g., recurrence times, resonant frequencies, number of waveform extrema) 
are required or where data from many different cases must be compared or processed, 
the computer is required. For example, the oblique projections of the waveform in 
[ 13 1 ] are a memorable summary of some of the resonant and near-recurrent 
processes. 

F. D. Tappert [ 1321 has studied the interaction of azimuthally symmetric localized 
states with various impact parameters as solutions of the NLSE 

O=ivt+(wxx+wyJ+f, (84) 
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where 

f = a-$(1 - exp[-a ] WI’]). (85) 

Equation (84) models self-focussing and filamentation of a laser beam in a nonlinear 
dielectric, where ponderomotive forces have been included. Tappert’s movies 
summarize a wealth of information. Konno and Suzuki [ 1331 study the evolution of a 
single beam with a nonsaturable and a different saturable nonlinearity, namely, 

f +4* and f~cv/lwl’/[l +~*l~l*l. (86) 

Bialynicki-Birula and his colleagues have been studying the 2D nonlinear 
Schrodinger equations with a logarithmic potential [ 1341. Makhankov and his group 
at Dubna have studied the interaction of “Q-solitons” [ 135, 136, R9] for 

0 = Wtr - (w,, + wyJ + w - w I wl’/P + I wl’l- (87) 

To obtain the Q-soliton shape $ they take w = d(r) eiUt and solve the resulting 
nonlinear boudary value problem. The simulations are head-on collisions of Q- 
solitons with equal and opposite speeds (varying with p) and zero impact parameter 
so that symmetry can be used to reduce the computer load by a factor of 4. They 
observe: “elastic (undistorted through passage) and weak inelastic collisions; decay 
of interacted states; decay through a resonance; and the creation of bound states.” 
Similar behavior was found by Simonov and Tjon [Rl 11. 

P. L. Christiansen and P. Lomdahl [80] have been studying the collapse of ellip- 
tical “ring solitons” and interaction of circular “ring solitons” with different 
boundary conditions (Fig. 12). These are solutions of the 2D sine-Gordon equation 

0 = wxx + wyv - vft - sin w. (88) 

At Pittsburgh, we have been studying the interaction of localized dipolar vortex 
solutions of the incompressible Euler equations in 2D 

These, so-called translating “V-states” [ 1371 are piecewise-constant regions of 
vorticity, ri, which travel at a uniform U related to their circulation (or area). Their 
shapes can be solving the free-boundary nonlinear integral equation [ 138, 1391 

where 

V(xT Y) + UXzCir (x9 Y) E r,, i= 1,2, (90) 

1//=--(2n)-‘~r; G(x-t,y-rl)&&, 
i I Di 

(91) 
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D, is the domain within Ti, and 

G=jlog[(x-#+(y-q)2]. (92) 

Using the method of “contour dynamics” [ 140, 1411, A. Schwartz has studied the 
zero impact-parameter interaction of a single V-state with a pair of oppositely signed 
point vortices indicated by the filled small circle. Figure 15 shows four “head-on” 
interactions. Only the upper half of the x-y plane is shown because of symmetry and 
in each panel time increases upward. All runs begin at t = 0 with the same V-state. 
The arrows in the lowest and highest panels show the direction of approach and 
separation of the nearby vortex states. Figures 15a and b show weak interactions with 
large and small phase shifts, respectively. In both cases the contour is left “ringing”; 
that is, the perimeter-deviation plots [P(t) - P(O)]/P(O) vs t (where P(t) = $ ds) show 
characteristic boundary oscillations. Figures 1% and d show strong “breaking” or 
“enstrophy-cascade” interactions. 

Contour dynamics was used by E. A. Overman, II and the author to study the 
head-on zero impact-parameter interaction of two V-states with the same circulation 

‘2 ’ ’ ’ 6’ ‘1 ’ ’ ’ 31 

a . 

63.1 

c; 

52.1 

24.0 

‘D 
42.0 

. 
31.0 0 

20.0 -.0-I 

4.0 --I -0 c 

a b c d 

FIG. 15. Examples of the zero-impact parameter head-on interaction of a travelling dipolar V-state 
and a pair of point vortices. Solutions of the Euler equations in two dimensions. (a) Weak interaction 
with large phase shift. (b) Weak interaction with small phase shift. (c) Strong (breaking) interaction. (d) 
Strong (breaking) interaction. (Only the upper half of the plane is shown. The lower is obtained by 
symmetry.) In panels (a) and (c), the V-state approaches from the right and in panels (b) and (d) it 
approaches from the left. This figure was provided by A. Schwartz. 
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but different areas and different axis-offset distances. In Fig. 16, we see the upper-half 
plane contours for t = 0 and t = 60 with the trajectory of the center of areas given as 
a dashed time. This interaction suggests that translating V-states need not be 
symmetric. We also show a typical diagnostic at t = 0, namely, curvature vs arc 
length, which aids in elucidating fine-scale phenomena and assessing the numerical 
quality of the runs, particularly when breaking takes place [142]. 

Makino, Kamimura, and Taniuti [143] and McWilliams and Zabusky [144] have 
been studying the interaction of “modon” solutions of the quasigeostrophic 
equivalent-barotropic equations 

~t+LV,--~,W,=-PW,9 
vxx + wy, + YZW = -4 

(93) 

These modons [ 1451 are localized stationary states that translate uniformly with 
velocity c and are of interest in gradient-drift plasmas [ 1431 and atmospheric 
“blocking” phenomena [ 1451. We have studied those with vorticity distribution C 

[ = -cq2 sin 8 I 
J, W/J, &I, r< 1, 

&W/&(9)~ r> 1, (94) 

where the structure parameters k and q and the speed c satisfy the relations [ 1431 

q2 = WC) + Y2 and ~k-lJzWJ,(k)l = k-%qY&W- (95) 

-5. 
d TIME = 60.0 

AREA = 0.6860,0.1712 
VORTICITY = 
+PT = 77,121 

CIRCUM = 3.2921.1.470~ 

TIME = 0.0 +PT q 64.66 
AREA = 0.6846,0.1711 CIRCUM = 2.9849,1.4925 
VORTICITY q l.,-4. 

FIG. 16. Contour simulation of the interaction of two approaching (head-on) translating V-states 
with the same circulation. The upper panel shows the contours in the upper-half plane at t = 0 (below) 
and t = 60 (above) and the trajectories (dashed lines) of the center of areas. Tic marks indicate intervals, 
At = 12.0. The curvature K(S, 0) is plotted for each contour. This figure was provided by E. A. Overman, 
II. 
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The J,, are the Bessel functions of the first kind and the K, are the modified Bessel 
functions of the second kind. Figure 16 shows a sequence of frames (time increases 
downward) of a zero-impact parameter head-to-tail interaction between modons, 
initially translating to the left at c, = -0.75 and c:, = -1.75. (They are viewed in a 
frame of reference with velocity = -1.25 so in frame a they are approaching.) Here 
/3= 1, y2=2.0, q,=O.8165, k,=3.897, q,=1.195, k,=3.951. Note after a strong 
interaction in which the slower modon (No. 1) is “dragged around” the faster modon 
(No. 2) we see a reformation into two solitary eddy states and two very small 
elongated vortex regions. Note, in frame e, modon No, 1 is reduced in size from its 
initial size. In a careful examination of the trajectories of the vorticity maxima, we 
find a speed change due mainly to vorticity rearrangement. It is possible to find 
parameters that yield modon configurations which minimize this speed change. Thus, 
the interactions are soliton-like; that is the vorticity maxima experience a phase shift 
and there is a very small excitation of internal degrees of freedom. However, for other 
parameters, new “inelastic” effects are observed, including: vorticity filamentation 
following moderate-to-strong interaction; modon “capture” (component monopoles of 
the same sign merge) in the overtaking (head-to-tail) mode; and the fission of modons 
into their component monopoles in the head-on mode. 

4.4. Analytical-Computational-Experimental Comparisons 

In closing, let us touch briefly on the relation of all the above to experiment, 
Progress in our understanding of the natural sciences has always depended upon the 
give-and-take between modeling (or theorizing), analysis, and experiment. With large- 
scale computers, we can process experimental data from a variety of sensors and 
juxtapose them readily with large-scale simulations-numerical solutions of ordinary 
and partial differential equations, etc. The insights gained from attempting to bring 
these results into agreement can synergize the rate of improvement of models, 
algorithms, analytical methods, and experimental procedures. The environment of 
shallow water waves is a splendid domain for examining this mode of working and 
the recent paper by Bona, Pritchard, and Scott [ 1461 (discussed below) illustrates it. 

In the laboratory experiment, a wavemaker at one end of a long tank generates 
small-but-finite amplitude waves which are sampled continuously at spatial intervals 
downstream, before the leading perturbation is reflected from a nearly obsorbing 
beach. Zabusky and Galvin [ 1471 used a continuous sinusoidal wavemaker and were 
the first to examine features of the data that were a property of the KdV equation. 
They did this for Ursell (UR) or Stokes (S) numbers 

Ur = S = 4196: = aA’/d’ 

up to 153.4, where d is the still water depth, 1 is the wavelength and a is the 
amplitude of the perturbation. (Note, in [ 1471, experiments with three different Ursell 
numbers were performed, namely: 21.9, 95.1, and 153.4. Unfortunately, misprints 
caused them to be given as 21.95, 48.16 and 777 in entry 16 of Table 1. However, the 
correct values of 8: are given in Table 1.) They made several assumptions to relate 
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the experiment to numerical solutions of an initial-value problem on a periodic 
interval. They found the location and number of maxima (up to three) in one 
wavelength downstream from the wavemaker were in surprisingly good agreement. 
However, no comparison of absolute amplitudes could be made because they 
neglected dissipation. Hammack [ 1481 and Hammack and Segur [ 1491 continued 
with an impulsive wavemaker that generated an isolated waveform. In the latter, they 
used the inverse-scattering method for the KdV equation on the real line to predict 
the number of solitons to emerge from the initial waveform. For 50 < adz/d3 < 600, 
the predicted number of emergent solitons was in agreement with experimental obser- 
vations, but the predicted amplitude of the leading solitary entity differed by 15-20% 
from observed values, after a correction was made for damping. Further results on 
interacting localized waves were obtained by Weidman and Maxworthy [ 1501. 

To overcome the problems associated with using undamped, initial-value solutions, 
Bona, Pritchard and Scott [ 1461 made a comprehensive and coordinated analytical, 
computational and experimental study. After a discussion of several models of 
damping, they “... decided to use and ad-hoc representation of the wave damping...” 
and numerically solved 

(96) 

which is their Eq. (7.1) designated (Mt). They designed an explicit, unconditionally 
stable fourth-order space-time algorithm for the semi-infinite line with a time- 
dependent boundary condition (that simulates the wavemaker). They developed a 
novel numerical procedure, analyzed discretization errors, and examined convergence. 
If we set the two damping constants v = p = 0 and a = 1, /3 = 3 and y = 2, Eq. (96) 
becomes the RLW equation obtainable by an asymptotic procedure from the incom- 
pressible Euler equations. 

In their computational-experiment comparisons they found quantitative agreement 
for S< 11.8 and a= 1, /3=j, y=d, v=O, ,~=0.014. However, for S= 18.1, the 
agreement between computation and experiment was “... significantly worse...” than 
in earlier cases (as shown in their Fig. 9) “... for the experimental results indicate the 
presence of a substantial amount of second-harmonic component which is not nearly 
so strongly evident in the theoretical solutions of Fig. 1 lb.” They assess all the 
possible causes and decide that by “... tinkering with the model the agreement could 
be improved” [ 15 11. In essence, they varied the parameters in (96) to be consistent 
with a linear dispersion relation that includes a bottom boundary layer for 
dissipation. Still, they found that the model did not yield quantitative comparisons for 
S > 26.3. “... At larger values of S their were features of the experiments [higher 
harmonics] that were not predicted by the model.” The disagreement probably arose 
because of the large effective damping coefficient of the experimental environment. 
That is, the tank constraints caused them to operate with a small still water depth and 
a small wavelength. This made the damping term PU,, and the dispersive term YU,,.~ 
of comparable magnitude. This is readily seen in their Figs. 1 la and 16, which give 
the waveform of 17(x, t) at a given large time. One sees a high harmonic content near 
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FIG. 17. The interaction of dipolar solitary eddy states of the one-layer geostrophic P-plane 
equations. Note the reassembly of the overtaken state and the formation of two very weak vorticity 
regions after the interaction. The velocities are c, - - -0.75 and c2 = -1.75, and they are viewed in a 
frame of reference moving with velocity = -1.25 so that they seen to be in a head-on collision. (a) 
f = 0.5; (b) t = 1.9; (c) t = 2.4; (d) f = 2.9; and I = 5.7. 

the wavemaker which damps out quickly as x increases. The experiments of Zabusky 
and Galvin have a smaller dissipation, and the waveform starts out nearly a pure 
sinusoid (see Fig. 4, top [ 1471) an evolves into the usual soliton pattern (monotonic d 
decay of wave maxima in a period) as one moves away from the wavemaker. As they 
note in [146, Section 2.31, “Thus, any attempts to account accurately for dissipation 
must to a certain extent be guesswork.” 

The essential questions still remain for a dominantly dispersive system, namely: (1) 
What model equations can describe shallow water wave phenomena for Ur Q 150? 
(2) What boundary conditions should be used to model the wavemaker experimental 
geometry? (3) What is the proper representation for dissipation? (4) What tests or 
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measures should be used to establish good “quantitative” agreement? For 
nonbreaking shallow water waves at large Ur, definitive answers are not in hand and 
another round of modeling, algorithm formulation, and experiment is required. 

Remark 10. Literature awareness. For all the good papers I have missed or 
mislaid, I apologize to my colleagues and friends. I hope they will kindly bring them 
to my attention. For the reader wishing to tap into this literature of solitons, I have 
included a chronological listing of: long review papers; conference proceedings; a 
collection of invited papers; and monographs and textbooks that have been published 
or are being written. 

5. CONCLUSIONS 

To me it is clear that the soliton paradigm validates von Neumann’s foresight. Not 
only has it engendered much new activity in pure and applied mathematics, but it 
provides a new conceptual basis for applications in diverse areas of physics. For 
realistic systems that are near-integrable, the soliton concept provides an economy-of- 
thought in posing problems and obtaining solutions. 

E. Chargaff [152], in his review of nucleic acid research, notes “It is in general 
true of every scientific discovery that the road means more than the goal. But only 
the latter appears in ordinary scientific papers.” This paper is an attempt to show 
concretely that the analytical-computational synergetic approach is a mode of 
working that is applicable generally in the natural sciences. It requires good analysis 
and good computation. But it also requires good graphics and other modes of 
computer expression. Perhaps in the future we will stimulate images directly by 
coupling computer-generated electrical signals to the biochemical milieu of our 
nervous system. 

W. Pauli, the theoretical physicist, in a unique volume [153] was reviewing 
Kepler’s contributions and noted, 

. . . What is the nature of the bridge between the sense perceptions and concepts? All logical 
thinkers have arrived at the conclusion that pure logic is fundamentally incapable of 
constructing such a link. . . . The process of understanding nature as well as the happiness that 
man feels... in the conscious realization of new knowledge, seems thus to be based on a 
correspondence a “matching” of inner images with external objects and their behavior... 
images [called by Kepler archetypal (“archetypalis”)] with strong emotional content, not 
thought out, but beheld, as it were, while being painted. . . . As ordering operators and image- 

formers in the world of symbolical images, the archetypes [or “primordial images” of C. G. 
Jung] thus function as the sought for bridge... , [Italics mine] 

Pauli is known to have had a mystical bent and his words are deeply personal and 
therefore difficult to relate to. I have taken the liberty of paraphrasing his remarks on 
the basis of my own experience with computers to: 

The discovery of new knowledge in the natural sciences is a manifestation of a “matching” 
that is a linkage or a resonance between data and an image of that knowledge in deeper levels 
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of our consciousness. To date, and for many, deductive mathematics has often bridged the two 
domains. A proper picture or graph in the external domain can synergize the formation of 
images in our “nonconscious” mind and provide an alternative circuit for discovery. Many 
present abstract fields of mathematics had their origin in making this linkage. 

With computers, the intuitive-geometric approach can be developed, taught to our 
students and made part of the scientists modus operandi. 

APPENDIX A. EXCERPT FROM PAMPHLET ACCOMPANYING THE SOLITON FILM 
DESCRIBING SOLUTION OF THE MODIFIED KdV EQUATION 1411. 

Part II. Interaction of a Compressive and Rarefactive Soliton; Numerical solutions 
of the partial differential equation 

U$ + u2u, + 82u,,, = 0 (0 <x < 2), (AlI 

with periodic boundary conditions (December, 1965). 
For the numerical simulation of (Al), the interval 0 ,< x < 2 was divided into 400 

positions x, and the equation was discretized in the variables x and t according to the 
explicit scheme: 

U(X”, t + Qt) = 24(X”, t) - $%[u, t], t = 0, iAt, +At, :At; 

u(x,, t + At) = u(x,, t -At) -FJu, t], t = At, 2At,...; 

where 

At 
%F”[U, t] =; x 

u4(x,+ 1, t) - u4(x,, t) U4(X”, q - u4(x,-, 3 t) 

U(x”+*,t)--(x,~t) - u(x,,t)--(xv-*, t) 1 
+ 2J2&3 [U(X,+z,t)-2u(X,+1,t) + 224x,-,, t>-U(X,-2, t)], 

and 

Ax = 0.005, At= 1.155 x 10-4, 6 = 0.0208. 

The initial condition is 

u(x,,O)=AI sech[(6-1’2A,/G)(x,-x,,)] +A2sech[(6-1’2A2/G)(x,-x,,)], 

where 

A, = 1.0, A, = -0.667, x,~ = 0.45, x2@ = 1.0. 

(‘42) 

(A3) 

(A41 

The calculation was carried to 87,000 computation steps (t = lO.SO), at which time 
the two solitons have completed their interaction. The film has a frequency of one 
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frame every 15 computation steps. At the end of Part II, the rarefactive soliton 
reenters the spatial (x) interval from the left as a result of the periodic boundary con- 
ditions. 
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